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SUMMARY

Internal waves are modelled in two different circumstances: in a continuously stratified fluid and at the
interface between two immiscible fluids. This is done using the lattice gas approach. The standard single
phase model and an immiscible two-phase model are both modified to incorporate gravitational
interactions. Standing internal waves are set up in both models and are seen to oscillate under the action
of the gravitational interaction. The results obtained suggest that the lattice gas approach can be a useful
tool in the modelling of such phenomena. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Internal wa6es

Internal waves occur in two circumstances: on a continuous density gradient and on a
density step at the interface of two fluids.

1.1.1. Continuously stratified fluids. Continuous density gradient internal waves can occur in
any stratified fluid and are most commonly found in the ocean and in the atmosphere where
a density gradient is produced. In the ocean the density is a function

r=r(p, T, x)

of the pressure p, the temperature T and the salinity x, defined as the proportion by mass of
the dissolved salts. The composition of the dissolved salts also varies but not by enough to
have a significant effect on the density. In the ocean we expect the temperature to vary between
the freezing point of sea water, 271 K and a maximum value of :300 K giving a density
change of :0.5%. The salinity varies from about x=0.034 to 0.037, giving a density change
of about 0.2% [1]. In the ocean it is found that the variation of T and x is much more
important than the density changes produced by variations in the pressure p with depth [1].
Thus, we are in fact interested in the variable

ra(T, x)=r(pa, T, x),
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the density that sea water at temperature T and salinity x would have if it was brought to
atmospheric pressure pa without changing T or x. In general, we expect pa to vary between
about 1020 and 1030 kg m−3, a variation of only about 1%.

In the atmosphere density gradients are produced primarily by pressure variations; here the
pressure variations can cause very large density differences. At the earth the pressure is
atmospheric pressure pa, which decreases with increased altitude and approaches zero at the
limit of the atmosphere. The variation in the density in the atmosphere can be much greater
than in the ocean.

1.1.2. Density steps. Interfacial internal waves can occur whenever two fluids of different
densities come into contact with an interface between them. Step-like density stratifications
which approximate to the two miscible fluids situation can be found in the ocean. This can
occur when fresh water rivers flow into the salt water of the sea. The fresh water settles on top
of the salt water and interfacial waves can be formed at the boundary. This happens in practice
in many deep estuaries, such as the Norwegian fjords, provided conditions are such that there
is no extensive mixing of the two layers. Mixing can be caused by strong tidal motion and also
by rough seas.

1.2. Lattice gas modelling

The lattice gas model has been used successfully over the past few years to model a number
of fluid phenomena, ranging from simple, single fluid simulations such as flow round plates [2]
and channel flow [3] to more complicated flows involving two or more fluids, including the
Kelvin–Helmholtz instability [4], the combustion of gases [5] and wave motion at a free
surface [6]. Lattice gas models have a number of advantages over more traditional numerical
methods, particularly where fluid mixing and phase transitions can occur. The simulation is
always performed on a regular grid and can be efficiently implemented on a massively parallel
computer. Solid boundaries and multiple fluids can be introduced in a straightforward manner
and the simulation is performed equally efficiently, regardless of the complexity of the
boundary or interface. The efficient implementation of complex boundaries has already been
exploited in the study of flow through porous media [7,8] where the porous media is
represented by a random configuration of boundaries. The lattice gas is ideally suited to the
fast, parallel implementation and when interfacial waves are being considered, the simplicity
with which the interface is simulated makes the lattice gas model a good choice for internal
wave simulations.

1.2.1. The standard FHP model. The lattice gas method on a hexagonal lattice was first
introduced by Frisch, Hasslacher and Pomeau (FHP) [9]. Here we consider the FHPIII model
which consists of an ensemble of fluid ‘particles’ moving on an underlying hexagonal grid.
Each particle moves along one of the six links di(i=1, 6) where the direction of di is given by
sin(pi/3−p/6)i + cos(pi/3−p/6)j, where i and j are unit vectors along the orthogonal x- and
y-axis shown in Figure 1. Alternatively, the particle remains at rest at one of the intersection
points (sites) of the lattice, link d0. The link directions and the co-ordinate system are shown
in Figure 1. The following constraints are applied to the motion of the particles:

1. Only one particle is allowed on each link at one time; this is referred to as the exclusion
principle.

2. Particles on link d0 have zero velocity and all other particles travel at unit speed, moving
from one site to a neighbouring site in each time-step. A particle travelling on link di has
velocity ei, where �ei �=1.
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3. At each time-step the particles at each site collide in such a way that the number of
particles and the momentum are conserved at each site.

These constraints make the FHP model very suitable for computer implementation. The
model is naturally discretized in space and time since only the state of each site at each
time-step is required to fully describe the system and to calculate the state of the system at the
next time-step. The restriction of only one particle on each link means that the state of each
site can be represented by one seven-part number s = (n0, n1, n2, n3, n4, n5, n6) where ni=1 if
there is a particle on link di and zero otherwise. Updating the model between time-steps is also
efficient since the new state of each site at any time-step depends only on its own state and the
state of its six nearest neighbours at the previous time-step, and the outcome of the particle
collisions. Since there are only seven possible links for the particles to travel on and a
maximum of seven particles allowed at each site, there are only ever a maximum of two
possible outcomes which conserve both particle number and momentum. There is no need to
calculate these outcomes at each site at each time-step, as they can be read from a table. Any
set of collision rules can be used provided they conserve particle number and momentum. Here
we use the FHPIII collisions which are formed from the basic collisions shown in Figure 2 and
their rotations through 960°, the basic collisions with a spectator particle (moving or at rest)
and the dual of these collisions (found by swapping full and empty links). In Figure 2 the
left-hand column represents the particles approaching the site before collision. The right-hand
column represents the outcome of the collision. Where there are two possible outcomes one is
picked at random. Rest particles are represented by a solid sphere. Provided the FHP collisions
satisfy the conservation of mass and momentum equations

%
i

ni(t+1, r+ei)=%
i

ni(t, r) (1)

and
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i
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at each site, it can be shown [9,10] to satisfy the equations
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Figure 1. The six directions of the hexagonal lattice.
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Figure 2. The basic FHP collision rules.

where r is the density, P is the pressure, d is the density per link, d=r/7 and n is the viscosity.
For the FHPIII model [10]

g(d)=
7(1−2d)
12(1−d)

(3)

and

n=
1
28

1
d(1−d)

1
1−8d(1−d)/7

−
1
8
. (4)

This is the continuity equation and the Navier–Stokes equation with an extra factor g,
which is a function of the density and of the collision rules used. The viscosity n, is also a
function of the density and the collision rules. The Navier–Stokes equation can be recovered
by resealing the velocity and pressure by g [11]: u %�ug, P %�P/g. We then recover the
Navier–Stokes equation in the scaled variables.
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1.2.2. Calculating macroscopic quantities. The microscopic density r and velocity u at each
site are defined by

r(t, r)=
def %

i

ni(t, r)

and

ru(t, r)=
def %

i

eini(t, r)

Macroscopic quantities such as the fluid velocity and density are found by dividing the grid
into cells containing several lattice sites and averaging the microscopic velocity or density over
the cell. The larger the cell the less noisy the results will be, however, the size of a cell is
restricted by the limits imposed on the overall grid size by computer memory and time
restrictions. Typically a cell will be no smaller than 16×16 sites. Figure 3 shows four
averaging cells, each 6×6 sites, on a portion of a square lattice (a square lattice has been used
for convenience to demonstrate the averaging principle). Table I shows the microscopic details
of the total number of particles �ni, i=1, . . ., on each link and the total number of particles
in each cell, N. Also shown in the table are the details of the macroscopic velocity u and the
macroscopic density r which are derived from the microscopic quantities. The angle u is the
angle between the velocity direction and the x-axis. Note that the density is defined to be the
mean number of particles per site in the cell rather than the mean number of particles per unit
volume and the velocity is defined as the vector sum of all the microscopic velocities.

Figure 3. An example of averaging on a section of a square lattice with four averaging cells, shown by the dashed
lines, superimposed over the grid. The individual particles are represented by the small arrows and the average

velocities by the large arrows. The details of the different velocities and densities are shown in Table I.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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Table I. The total number of particles � ni on each link, the x and y components of the averaged
velocity u, its magnitude and inclination from the horizontal, u, the total number of particles N and

the average density r for the four averaging cells shown in Figure 3

�u � (lu) u (deg)Cell �n1 �n2 �n3 �n4 N r (lu) ux (lu) uy (lu)

2/r 2/rA 6 3 4 3 16 16/36 900
00B �5 03 5 3 16 16/36

1/r 1/r 
2/rC 4 4 453 3 14 14/36
2/r 1/r 
5/rD 4 5 3 3 26.515 15/36

1.3. Colour models

Two different fluids can be modelled by labelling the particles according to the fluid they
belong to. Thus a ‘red’ and a ‘blue’ fluid can be simulated at the same time provided the
number of red particles, �i n i

(r), and the number of blue particles, �i n i
(b), are conserved at each

time-step. This is achieved if the conservation of colour equations

%i n i
(r)(t+1, r+ei)=%i n i

(r)(t, r)

%i n i
(b)(t+1, r+ei)=%i n i

(b)(t, r)

are added to the conservation of mass and momentum Equations (1) and (2). Provided these
quantities are conserved there is no need to further restrict the particles after a collision. Thus,
if a red and a blue particle collide head-on, they will collide according to the collision rule
shown in the first row of Figure 2, one of the two outcomes being picked at random as in the
single-particle model. To allow for the conservation of colour, all that is required is that after
the collision one of the particles is red and one is blue. This can be achieved either by
randomly selecting which is red and which is blue or using some other scheme. If the random
method is used, the two fluids will mix together, however different methods can be used to
assign the colour and these will influence the behaviour of the model.

1.3.1. The colour-field model. The colour-field surface tension model was devised by
Rothman et al. [12]. It specifies a method for distributing the colour after a collision (subject
to the conservation laws) which causes the two fluids to fully separate and produces a surface
tension between them. Let Ci(t, r), the colour density of link di at time t and site r, be given
by

Ci(t, r)=
def

ni
(r)(t, r)−ni

(b)(t, r),

the difference between the number of red and blue particles on the link. Due to the exclusion
principle Ci can take the values −1, 0 and 1. The colour density at a site is given by

C(t, r)=%
i

Ci(t, r).

The local colour flux q [s (r)(t, r), s (b)(t, r)] is given by

q [s (r)(t, r), s (b)(t, r)]=
def %

i

Ci(t, r)ei
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and is the difference between the red and blue momentum at r at time t where the site is in
state s=s (r)+s (b), the sum of the red and blue states. The local colour field f(t, r) is given by

f(t, r)=
def %

i

ri %
j

Cj(t, r+ei),

which is the microscopic gradient of the colour density C(t, r). The work W(s (r), s (b))
performed by the flux against the field is

W(s (r), s (b))= − f ·q(s (r), s (b)).

The out-state of any FHP interaction s (r)�s %(r), s (b)�s %(b) is then chosen such that

W(s %(r), s %(b))= min
s¦(r), s¦(b)

W(s¦(r), s¦(b))

where s %%(r), s %%(b) are all the possible collision outcomes. Here the effect of the colour field model
is maximised by not only considering s %%(r), s %%(b) to be the possible outcomes of any collision but
also by considering the possibility of no FHP collision taking place and the (colourless)
particles continuing in a straight line. Consider the first collision shown in Figure 2 where one
particle is red and one is blue, s (r) and s (b) can be represented by s (r)= (0, 0, 1, 0, 0, 0, 0) and
s (b)= (0, 0, 0, 0, 0, 1, 0) (a red particle in link 2 and a blue particle in link 5). The possible
outcomes are shown in Table II where (a) and (b) are the two colour distributions possible for
the first outcome shown in Figure 2, (c) and (d) are the two distributions possible for the
second outcome shown in Figure 2 and (e) and (f) are possible distributions if no collision
takes place. The outcome selected (s %(r), s %(b)) is the one which minimises W. The effect of this
additional interaction is to separate the two fluids with a definite interface between them. Other
than the labelling of the particles, the two fluids are treated in the same way and therefore have
the same properties.

1.4. Gra6itational interactions in the FHP model

To simulate a gravitational force we need to introduce an interaction which will decrease the
fluid momentum in the vertical direction, while preserving the momentum in the horizontal
direction. This was done in the basic FHP model by flipping a small number of particles from
link d1 to d3 and from link d6 to d4, provided there were no particles already on the destination
links. With this implementation of gravity the x-direction is horizontal and the y-direction is
vertical. The strength of such an interaction depends on the number of flips which take place
each time-step. We ensure that the number of such particle flips is small compared with the
number of FHP collisions, so that the additional interaction, while producing a noticeable
effect, will only have a negligible affect on the other properties of the fluid [13]. There are two

Table II. The possible outcomes of a head-on collision between one red and
one blue particle

s %%(b)s %%(r)

(0, 0, 0, 0, 1, 0, 0)(0, 1, 0, 0, 0, 0, 0)(a)
(0, 1, 0, 0, 0, 0, 0)(b) (0, 0, 0, 0, 1, 0, 0)

(c) (0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 1, 0, 0, 0)
(d) (0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 1, 0)(0, 0, 1, 0, 0, 0, 0)(e)
(0, 0, 0, 0, 0, 1, 0) (0, 0, 1, 0, 0, 0, 0)(f)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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parameters which describe the gravitational interaction. The first is Sg which is the percentage
of all possible gravity flips which are performed. The other is m, which is the mean number of
flips per site per time-step and is measured during the simulation.

Gravitational interactions were introduced in a two-particle model in a similar manner,
however when two fluids of different ‘densities’ were being considered it was required that the
interaction strength be greater for the ‘heavier’ fluid then for the ‘lighter’ fluid. This was done
either by having the gravitational interaction acting only on the heavier fluid or by having it
acting on both fluids but with different strengths.

1.5. Boundary conditions

Two different boundary conditions can be applied at the edge of the grid, a solid boundary
which is either no-slip or free-slip. A no-slip boundary reflects the particles back along the
direction they approach in. A free-slip boundary reflects particles so that their momentum
parallel to the boundary is conserved and their momentum perpendicular to the boundary is
reversed. In the simulations described here all the free-slip boundaries are along the directions
of the x-axis. Thus a particle approaching the solid boundary along link d1 is reflected back
along link d3. These solid boundary conditions can also be applied in the interior of the grid
to simulate solid objects. The other kind of boundary condition applied here is the continuous
boundary condition. This is always applied at the edge of the grid and acts so that particles
moving off the grid at one edge move onto the grid at the opposite edge. Thus a particle on
a Nx×Ny grid with position (Nx, y) and velocity e2 at time t will move to position (1, y) at
time t1 if a continuous boundary is applied at x=1 and x=Nx.

1.6. Errors in a lattice gas model

The lattice gas model is different in several ways from the more traditional numerical
methods which have been applied to fluid simulations. There is also a marked difference in the
way errors appear in the results. The model involves tracking particles as they move and
collide according to simple rules. This is implemented using integer or Boolean arithmetic so
there are no errors introduced by, for example, rounding errors or finite difference approxima-
tions to derivatives; sources of error which appear in other numerical techniques. The absence
of such errors means that changing the grid size does not affect the accuracy of the results in
the way it would if a traditional numerical method was being applied. In fact, changing the
grid size changes the problem which is being simulated. Consider, for example, the simulation
on a Nx×Ny grid of a wave with wavelength l=Nx. If the simulation is repeated on a
2Nx×2Ny grid, then either the wavelength is kept the same and two wavelengths of the wave
are simulated or the wavelength of the new wave becomes 2Nx and one wavelength is
simulated as before. In the first case there is no change in the resolution of either of the two
wavelengths being simulated (although an ensemble average could be performed over the two
wavelengths). The second case describes the action which would normally be taken in a
numerical simulation to reduce the error, here it changes the wave which is being simulated in
the same way that doubling the wavelength of a wave produced in a wave tank would change
the wave period and velocities. This has been shown to be the case for surface waves [6] and
also applies to the internal waves being considered here.

The errors in measurements made from a lattice gas simulation come from the size of
averaging cell used, not the grid size. The error in the density and velocity measurements are
given by [14]

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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Dr=1.128
'd(1−d)

7S

and

Du=
C(r)


S
(5)

where S is the number of sites which are averaged over and C(r) is no larger than 0.43. It
should be noted that the source of this error is the measuring technique and so the error is the
same at all times: it does not accumulate over time. To reduce the error the averaging process
must be over as many sites as possible. The size of the averaging cell is restricted because is
must be small compared with the typical length scale over which the simulation is changing.
Temporal averaging is also possible, again, provided the averaging takes place over a time
significantly smaller than the smallest time scale of the simulation. Ensemble averaging can
also be performed between different simulations of the same problem.

2. NUMERICAL SIMULATIONS

A number of simulations were performed on the CM-200 at Edinburgh University for both
internal waves in a stratified fluid and interfacial waves at a density step. The stratified fluid
was produced using the FHPIII model with the additional gravitational interaction; a
horizontal density step was produced using the colour-field model with the additional
gravitational interaction. The gravitational interaction is required here because we are simulat-
ing gravity waves. In each case a horizontal boundary was placed at the bottom and top of the
computational grid and a continuous boundary was used at the other edges. The grid size used
varied for the different simulations but in every case the wave amplitude was considerably
smaller than its wavelength. Standing waves were simulated throughout because of the
simplicity with which they can be set up. An initial experiment was run in which the fluid is
initially given zero average velocity and allowed to settle under the action of the gravitational
interaction. This gave the density profile which we would expect when no waves were present.
A small sinusoidal standing wave at the extreme of its oscillation (all wave velocities at zero)
was then superimposed to give the initial conditions for the wave simulations. These waves
were then allowed to oscillate under gravity. At prescribed times during the simulation the
velocity and density of the fluid(s) were found by averaging the microscopic quantities.

3. RESULTS AND DISCUSSION

3.1. Internal wa6es in a stratified fluid

A 2048×1024 site grid was initialised with an average density of r0=2.1 particles per site
and zero velocity with a horizontal free-slip boundary at the top and bottom edges and with
continuous boundary conditions on the other edges. The system was then allowed to evolve
under the FHPIII collision rules and the gravitational interaction with strength Sg=0.15 for
3000. The gradient across the stratified fluid was found by averaging the density across each
of the rows. This is shown in Figure 4 where the density gradient is seen to be constant across
the fluid. A sinusoidal wave was then superimposed on the density gradient as described in
Section 2. The system was allowed to evolve and the velocity and density were measured by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)



J.M. BUICK ET AL.666

Figure 4. The variation in density with height when Sg=0.15.

averaging over 32×16 site cells every 1000 time-steps. The height of the central wave was
found from each density result by counting the number of cells with density greater than r0 in
each of the 64 columns. This method only gives the height to the nearest averaging cell,
however given the noise in the density, this is an acceptable method. These heights were then
Fourier transformed to find the mean height and amplitude of the wave. Figure 5 shows the
height of the central wave at its centre, calculated from its mean height and amplitude, plotted
against time. Also shown in Figure 5 is the best-fit damped cosine curve of the form
Ae−at cos(2pt/t+f)+h with the fitted parameters shown in Table III. The best-fit curve

Figure 5. The height of the r=2.1 wave at its centre, plotted against time and the best-fit curve through the points.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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Table III. The best fit data for the curve in Figure 5

t efhA a

−0.0246 1.27119.52 −1.14×10−5 3122 439

All units are in terms of lattice units and time-steps

shows a good agreement with the data. A is the initial amplitude of the wave, a is the damping
constant, t is the wave period, h is the mean depth and f is a phase shift which is introduced
to account for any initial time during which the set-up wave settles down to its natural form
before it starts to oscillate. The variable f allows for any error in the set up of the wave and
is expected to be small if the wave has been initialised properly. All units measurements are in
lattice units (lu); the units of length and time are the lattice spacing and the time-step. The root
mean square deviation between the data points and the curve is given by e. The attenuation is
seen to be negligible over the first 10 000 time-steps (three periods) and the best-fit decay
constant a was found to be small and negative. There will be some error in the fitted
parameters here owing to the small number of data points and also because they are accurate
only to the scale of the averaging cells. Clearly a must be positive but very small.

The density profile across the whole wave at times t=3000 and 8000 are shown in Figures
6 and 7. These figures show the density distribution of the fluid when the wave is approxi-

Figure 6. The density profile of an internal wave in a stratified fluid at t=3000, computed using the FHPIII model.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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Figure 7. The density profile of an internal wave in a stratified fluid at t=8000, computed using the FHPIII model.

mately at each extreme of its motion. The density measurements are slightly noisy due to the
random factors involved in the model and the size of the averaging cell. Despite the noise, a
sinusoidal density variation can clearly be seen across the fluid at each height, the amplitude
of the variation being seen to be approximately constant at all heights.

Figure 8 shows the x-velocity distribution of the fluid at t=4000 time-steps averaged over
64×32 site cells and extrapolated using a bilinear extrapolation routine. This has the effect of
further reducing the noise. The interpolated figure shows two main features:

1. The x-velocity distribution in the x-direction has a sinusoidal variation as expected;
2. There is a small variation of the x-velocity in the y-direction, the magnitude of the velocity

being slightly larger at the bottom of the wave than at the top.

Similar results are found for the x-velocity at the other times when results were taken, with
the magnitude of the velocity dependent on the phase of the wave. The error in the velocities,
given by Equation (5), is 90.009 which is \10% of the maximum extrapolated velocities in
Figure 8. For waves with phases such that the velocities are lower the noise can become
excessive. Similar results were obtained for the y-velocities but they were smaller and
consequently noisier.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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3.2. Interfacial internal wa6e simulation on a density step

Internal waves on a density step were implemented using the colour-field model and the
gravitational interaction for waves of wavelength 2048 lu. The simulation was run for two
cases: case (a) where gravity acted only on the heavy particles with a strength Sg=0.15 and
case (b) where the gravitational interaction acts on the heavy particles with strength Sg=0.2
and the light particles with strength Sg=0.1. In both cases the grid was initialised by first
setting up a system with zero average velocity and with an average density of 4.9 particles per
site. This is the density at which the colour-field rules give optimal separation of the two fluids
[12]. The grid was then divided into two sections with a horizontal line separating them; the
bottom section slightly larger than the top section. Particles in the bottom section were then
coloured red and the other particles coloured blue. The system was then allowed to evolve for
2000 time-steps under the required gravitational interaction and the colour-field surface tension
rules, and the height of the interface between the two fluids was found.

The density of the two fluids is shown in Figure 9 for case (a) where the density has been
found by averaging over each row. Figure 9 shows a small but constant density gradient across
the heavy fluid as is expected, since gravity acts in this fluid. The lighter fluid also has a
constant, but smaller, density gradient across it despite the fact that gravity is not acting on it.
This was seen to be a general feature and independent of the value of Sg in the heavy fluid.
This is produced in the interface region where the gravitational interaction reduces the vertical
momentum of the heavy particles. This momentum change is passed on, to some extent, to the
lighter particles during the implementation of the colour-field rules. Increasing Sg in the heavy
fluid increased the density gradient in the heavy fluid but left the density gradient in the lighter
fluid unchanged. Figure 9 also shows what appears to be a large mixed area between the two
fluids where there are significant numbers of both particles. In reality this is simply due to the
interface not being completely horizontal; the interface between the two fluids (where both
particles are present) is rarely more than one of two sites thick. For case (b) a similar graph
was obtained, but here the density gradients of both fluids depended on their Sg value. A new

Figure 8. The extrapolated x-velocity distribution of an internal wave in a stratified fluid after 4000 time-steps.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 657–676 (1998)
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Figure 9. The variation in density with height for both fluids when gravity acts only on the heavy fluid with strength
Sg=0.15.

sinusoidal interface was drawn in place of the horizontal interface and all the particles
re-coloured red if they were below the interface and blue if they were above it. For both
simulations the height of the wave at its centre was found every 40 time-steps. This was done
by considering a central column 16 sites wide. The number of rows containing mainly red
particles and the number containing mainly blue particles were found in the column. The
results are shown for cases (a) and (b) in Figures 10 and 11 respectively, along with the best-fit
curves as before. A good likeness is seen between the data and the best-fit curves. The values
found for the best-fit parameters are given in Table IV.

Figure 10. The fluid depth at the centre plotted against time for both the red and blue fluids and the best fit curves
through both sets of data when gravity is applied to the heavy particles only, with a strength Sg=0.15.
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Figure 11. The fluid depth at the centre plotted against time for both the red and blue fluids and the best fit curves
through both sets of data when gravity is applied to the heavy fluid with strength Sg=0.2 and to the light fluid with

strength Sg=0.1.

The results for case (a) show the wave amplitude A, the damping constant a and the period
t for the two fluids agreeing to within a few percent and the phase factor f is only a few
percent of a period, suggesting that the wave was initialised well. The mean variation, e,
between the curve and the data is also small, three or four lattice units, suggesting a good fit.
The values of e obtained for case (b) are no larger then those obtained for case (a), suggesting
the curve is as good a fit, although the best-fit parameters obtained for the red and blue fluids
differ slightly more for case (b) than case (a). Comparing the values of the periods and the
damping constants obtained for the two cases considered, it is seen that the period and the
damping constant are larger for case (b). The larger period is case (b), suggesting that the
effective gravitational strength depends on the average number of particles flipped in both
fluids and not on the absolute number in either. The mean number of particles flipped per site

Table IV. The best fit parameters for the curves in Figures 10 and 11

f eCase Fluid A a t h

−0.2348 3.74(a) Red 22.92 4.290×10−5 14 633 220
−0.274123314 512 4.074.431×10−5−24.04Blue(a)
−0.0753 3.38Red 27.22 8.680×10−5 21 870 222(b)

(b) Blue −33.12 1.048×10−4 18 810 230 2.95−0.136

All units are in terms of lattice units and time-steps

Table V. The mean number of gravity flips per site per time-step for the two
simulations

Case Mean flips in light fluidMean flips in heavy fluid

—1.33×10−3(a)
1.40×10−3 8.35×10−4(b)
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Figure 12. Velocity vector plot for the interfacial internal wave after 4000 time-steps. Averaging cells containing red
particles are represented by the thick arrows. The cells containing only or predominantly blue particles and cells at the

boundary containing significant numbers of each particle are represented by the thin arrows.

per time-step, m, for the two simulations are shown in Table V. The change in the damping
constant is due to the different densities of the fluids in the two simulations. The results also
show that the sum of the mean depths, h, for both simulations is slightly greater than the grid
size. This can be explained by the surface between the two fluids not being completely flat and
also the fluids settling down slightly at the start. This is also reflected in the difference between
the values of A found for both fluids.

Velocity plots at times t=4000 and 10 000 are shown in Figures 12 and 13 for case (a).
These vector plots show the motion of the two fluids. The thick arrows represent cells in which
at least 95% of the particles are heavy particles while the thinner arrows are for cells containing
only light particles and also the cells at the boundary which are partially filled with both
particles. The difference in the depth of the two fluids seen in Figures 10 and 11 can also be
seen here. The wave motion can be observed in both of the fluids, as can an area between the
two fluids where the velocities are small. This area is particularly noticeable when the fluid
velocities are largest. It is not clear from the results whether this is due to the motion of the
two fluids travelling in opposite directions at the boundary, causing a small boundary layer to
be set up or whether it is due to the averaging cell containing particles travelling in both
directions. The velocities obtained are small, many being B0.01, so they are fairly noisy. The
wave motion is distinct, however, and its clarity can be improved either by using an ensemble
averaging technique [6] or a filtering technique. The velocities of the red and blue fluids were
also recorded for case (b) and show the same features, although the velocities tend to be
smaller due to the increased damping.
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4. DISCUSSION

Two different approaches have been used to simulate internal waves. Internal waves on a
continuous density gradient were modelled using the FHPIII model with additional gravita-
tional interactions. Internal waves on a density step were modelled using an FHPIII model
with two distinct particle types by introducing colour-field surface tension interactions and
gravitational interactions.

4.1. Internal wa6es in a stratified fluid

The ability of a lattice gas model to perform such simulations was demonstrated. The
density and velocity profile of the wave were found at selected times. The wave motion could
be seen clearly in the density plots and the velocity plots also showed evidence of wave motion,
although they were some what noisier. The wave was seen to damp only slowly; over three
periods there was no noticeable decay.

4.2. Interfacial internal wa6es on a density step

Internal waves on a density step were also simulated. It has been seen that waves can be
produced provided one fluid is made ‘heavier’ than the other. It was shown that this difference
in the strength of the gravitational interaction can be simulated by applying the gravitational
interaction with different strengths to the two fluids, where the lower strength can be zero. The
velocities of these internal waves were found to be relatively small and therefore fairly noisy,
however they are clearly seen to describe wave motion in both the fluids. The noise in the
results can be reduced using ensemble averaging techniques.

Figure 13. Velocity vector plot for the interfacial internal wave after 10 000 time-steps. Averaging cells containing only
or predominantly red particles are represented by the thick arrows. The cells containing only or predominantly blue
particles and cells at the boundary containing significant numbers of each particle are represented by the thin arrows.
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4.3. Comparison of models

One major difference between the results obtained for the two different types of internal
waves studied was the size of the damping constant. The density of the two fluids at the
interface is about 4.9 particles per site which, because of the duality of the model (swapping
particles and empty links in one collision rule produces another allowed collision), means the
viscosity of the fluid should be the same as the viscosity of a fluid with density 7−4.9=2.1
particles per site. This is the density which was used to model waves in the stratified fluid. The
colour-field collision rules affect the fluid when there are particles of different colours present
at the same site. This only occurs in a small number of sites on either side of the fluid interface,
so the additional interaction should have only a minimal affect on the viscosity of either fluid.
A small increase in the viscosity of the colour-field fluid is expected however [12], because the
in-state is allowed to be the same as the out-state even when a collision can occur. A higher
damping rate is observed in practice for interfacial waves when compared with other motion
in a fluid with same viscosity. One feature of the FHP model is that the viscosity can be large
even at a density of 2.1 particles per site, the density at which it is minimum for the FHPIII
collision rules, so we would expect some damping due to viscous effects. These effects have
been minimised by using the FHPIII collision rules which give the lowest viscosity of any of
the standard rules and by using large wavelengths which have the effect of increasing the
Reynolds number of the simulation.

4.4. Comparison of results with experiment and theory

Standing internal waves have been studied experimentally by Thorpe [15]. Experiments were
carried out on standing interfacial waves and standing waves in a stratified fluid using a tank
14 inches long fitted with two plungers, one at either end, a fixed distance above the tank
bottom. The photographic results [15] show the same features as the results obtained here. For
the stratified fluid Thorpe’s results show a sinusoidal variation in the density at all depths. The
size of the variation is reduced slightly at the top and bottom of the tank due to the
boundaries. Other than this the density variations shown in Figures 6 and 7 compare well with
the experimental results. The results obtained here for the interfacial internal waves also
compare well with Thorpe’s experimental results for low amplitude waves.

A qualitative comparison can be made between the results obtained and their expected
theoretical values which are well established [1,16]. This is done for the wave on a continuously
stratified fluid and for the interfacial wave when gravity acts on both fluids. For both waves
we expect the maximum horizontal velocity to be u %=va, where a is the wave amplitude at the
time the velocities were measured and v is the wave frequency, v=2p/t. Here u % is the
theoretical velocity and is related to the measured velocity through the scaling relation:
u=va/g. The frequency of the wave in the continuously stratified fluid is the Vaisala–Brunt
frequency:

v=
'−G

r

dr

dz
,

where G is the acceleration due to gravity. The rate of damping is

a=2k2n.

The rate of damping and the frequency of an interfacial wave, in deep water, is given by [17]

v=v0−v %
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and

a=v %+a %

where

v0=
'

Gk
(f−1)
(f+1)

, v %=v0
1/2 
2kf
n

(1+ f)2

and

a %=2k2 n(1+ f 3)
(1+ f)3

where r is the density of the lighter fluid and fr is the density of the heavier fluid. To find G
we consider the total force acting on S sites containing M particles (each of unit mass) at a
given time. The total force is MG=SrG. This is equal to the change in momentum which is
Sm̄
3g since each particle flip changes the measured speed of a particle by 
3 and its scaled
speed by 
3g. The value of m̄ is taken to the average of the two values of m in the two fluids.
Equating these two expressions gives

G=

3m̄g

r

where m is taken to be the average of the value in each fluid for the interfacial wave. The value
of r is taken to be its mean value and n(d) and g(d) are calculated from Equations (4) and (3)
using this mean value. The ratio f is the value of m in the denser fluid divided by m in the lighter
fluid. Using these values the following theoretical values are found at t=t/4 for the
continuously stratified fluid: t=3607, a=1.9×10−6 and u=0.11; and for the two-fluid
simulation: t=19 300, a=6.22×10−6 and u=0.017, all in lattice units. With the exception of
a for the interfacial wave these theoretical values are consistent with the values obtained in the
simulations. The theoretical velocity is slightly larger than the maximum values shown in
Figure 8, but the velocities in Figure 8 were measured at t=4000 time-steps, slightly after they
reach their maximum value. The velocities shown in Figure 12 are slightly larger than the
theoretical velocity, however, Figure 12 is for case (a) which is not as heavily damped as case
(b). The theoretical value of a for the interfacial wave predicts a significantly smaller damping
rate than was observed. This may partly be due to Harrison’s theoretical expression [17] being
a series solution in terms of 
n only up to order O(n). This would not totally explain the
difference between the simulation result and the theoretical value and it suggests that the wave
is being damped by the action of the colour-field rules acting at the surface.

4.5. Relating the simulation results to real physical problems

All the results presented here are in terms of lattice units which describe the lattice gas
model. It is important to be able to relate the results of a simulation to a real problem in the
physical world. To do this we must compare the dimensionless parameters between the two
situations. Therefore, the dimensionless parameters describing the simulated waves must be
examined. The ratio of the initial wave amplitude to the wavelength is small, never larger than
0.016, for each wave. This means that we are considering linear waves. The depth of the
stratified fluid is half of the wavelength. The fluid depths in the two-fluid simulation is such
that kh has a maximum value of 0.71. For this value tanh(kh)=0.61, however, since a no-slip
boundary is applied at the top and bottom of the fluid, the wave can be considered as being
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in deep water. The Reynolds number and Froude number, defined Re=c/kn and c
k/G
respectively, where c is the wave celerity c=v/k, of the two waves considered above are 2140
and 0.8 for the continuous wave and 300 and 0.5 for the interfacial wave. The ratio of the fluid
densities in the two-fluid simulation is f=1.68. The simulations relate directly to a wave in the
real world with the same or similar dimensionless numbers.

5. CONCLUSION

We have seen that the lattice gas model can be applied to simulate internal waves, both on a
continuous density profile and at a density step between two immiscible fluids. The results
obtained, although noisy, show the same qualitative features as waves produced in a wave tank
by Thorpe [15]. The results also showed reasonable agreement with theory, except for the
damping rate of the interfacial wave which was significantly larger than predicted. This may be
due to the action of the colour-field rules at the interface.
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